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Abstract-Energy conservation and network performance have 

become two of the most important issues in data center as 
the scale of cloud services continues growing. Recent researches 

usually consider these two issues separately. Energy conser
vation mainly deals with hosts, which reduces total energy 

consumption by consolidating virtual machine(VM)s to fewer 
hosts, and network performance mainly deals with network 

scalability and energy efficiency, which improves data center 
network(DCN) scalability by applying new network topologies 

or routing schemes and improves DCN energy efficiency by 
wnsolidating traffic. In this paper. we jointly consider these tWI) 
issues and define Combined VM Consolidation (CVC) problem. 

We prove that CVC is NP -complete and is inapproximable by a 
factor of 3/2 E unless P = NP. Next, we propose NICE: Network
aware VM ConsolIdation scheme for Energy Conservation in Data 
CEnter to solve CVe. Instead of taking the unrealistic hypothesis 

that migration cost is negligible, a common assumption in most 
literatures, we precisely analyze VM migration cost according 

to real-trace experiments in a 6-server testbed via VMware. 
Massin simulations validate the efficiency of NICE. In all, to 
the best of OUl' knowledge, we :u-e the fil"st work to emnhine VM 
consolidation with network optimization and migration cost. 
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I. I NTROD UCTION 

As the increasing demands for a wide spectrum of cloud ser
vices, energy conservation becomes one of the most important 
issues in modern data center. There are many works [1]-[8] 
trying to save energy in data center, and the common way 
is ilirougb improving en ergy eiliciency of hosLs and olher 
physical facilities. For instance, literatures [1]-[5] applied live 
virtuaL machine(VM) migration technology to conserve energy 
by firs I. C011solidatil1g VMs to fewer hosls imd Ihen turning 
idle hosts off. This can be implemented via many management 
softwares such as Xen and VMware, and the service downtime 
due to migration is extremely short. 

Apart from energy conservation, network performance is 
another important issue in modern data center, especially the 
scalabiliLY and energy efficiency of dala cenler neLwork(DCN). 
The common way to tackle the scalability issue is through 
applying new network topologies, among which DCeli [9], 
BCube [10], VL2 [11], Portland [12] are some of the most 
excellent works. Meng et. al. [13] tried to improve DCN scal
ability from a different perspective. They mapped VM pairs 
with hcavy lIlutual traHic 10 slol pairs in hosls wilh low cost 

cOll1lections in order to localize traffic as much as I)Ossible. [n 

this way, the allHllUlt or tTarric going Ihrough the core level 

switches is greatly reduced ,and this leads to a more scalable 
DCN. In [14], Li et. al. also tried to reduce the network 
cost during the VM placement procedure. However, Tso et. 
al. [15]dcfinc a novel distributed migration schcmc to rcduce 
VM communication cost. As for improving DCN energy 
efficiency, the common way is t llrough dynamically adjusting 

nelwork links and swilches according lo Lrallic demands. AbLs 
et. al. [16] exploited the energy-proportional characteristic of 
modern plesiochronous links to reduce energy consumption 
of DCN by dynamically adjusting data transmission rates of 
existing links according to traffic rate demands. Chabarek et. 
al. [17], Helleret. al. [18] and Wang et. al. [19] designed novel 
tramc TOuLing schemcs to achievc DeN energy conservation by 
dynamically turning on-off switches and cables. Mann et. al. 
[20] and Fang et. al. [21] exploited VM migration technology 
to improve energy saving potential of DCN. 

However, none of the above works jointly considered reduc
ing host energy consumption and improving DCN scalability 
and cnergy cHicicncy. It is obvious thaI VM consolidation 
arrecls trarnc dislribul.ion in DeN, and (raflic distribution is 
directly related to the scalability and energy saving potential of 
DCN. Therefore, we propose to reduce host energy consump
tion and 10 improvc DeN scalabilily and cnergy clIicicncy al 
the same time through VM consolidation. Instead of taking 
the unrealistic hypothesis that migration cost is negligible, in 
this paper we define cost. function ror VM migration through 

real-trace experiments in a 6-server testbed via VMware. We 
also illustrate the cost function for host energy consumption 
and network cost. Based on these cost functions, we formally 
define Combined VM ConsoLidation (CVC) which minimizes 
host energy consumption, network cost and migration cost. 
We prove that CVC is NP-complete by a reduction from 
classic Bin Packing ProbLem. We also analyze the hardness 
of approximation for CVC, say, CVC is inapproximable by a 
factor of 3/2 - e unless P = NP, where e is any given positive 
real number. 

In order to solve CVC, we propose an effective scheme 
named NICE: Network-aware VM ConsoLIdation scheme for 
Energy Conservation in Data CEnter. NICE consists of three 
subroutines. Firstly, we use FirstFit-Decr algorithm to pack 
all VMs into virtual hosts according to VMs' computing 
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request, with an approximation ratio of lJ to the optimal result. 
Secondly, we implement Kernighan-Lin algorithm to minimize 
total inter-host traffic. Finally, we design a greedy approach 
Greedy-Map which iteratively maps virtual host to physical 
host with minimum network cost and migration cost increase 
until all virtual hosts are mapped. 

We summarize our contributions as follows: 

• We definc migration cost quantilatively bascd on rea1-
trace experiments, and we analyze host energy consump
tion and network cost thoroughly. 

• We formally formulate Combined VM Consolidation 
(CVC) problem and prove its computational complex
ity and hardness of approximation. To the best of our 
knowledge, we arc the !irst work jointly considering host 
energy consumption, network cost and migration cost in 
VM consolidation. 

• We propose an effective scheme NICE to solve CVC, 
which is a three-step heuristic. 

• We validate Ihe eHkiency of NICE via massive simula
tions under various scenarios. 

The rest of the paper is organized as follows. In Section II, 
we review some related works. In Section III, we present 
important observations about date center host and DCN, and 
introduce our real-trace experiments on VM migration cost. 
Problem formulation and proof of CVe's complexity and 
hardness of approximation are presented in Section IV. We 
describe our scheme NICE in Section V. Evaluation results are 
shown in Section VI. We conclude our work in Section VII. 

II. RELATED WORK 

In [2] Verma et. at. firsl introduced various ronnulalion 
of the cost-aware Application placement problem. For each 
formulation, they described model assumptions, analyses of 
practicality of these assumptions and information required to 
solve corresponding problems. Their work showed compre
hensive theoretical and experimental evidence to establish the 
cHicacy of pMapper and Lhey proposed MP ratio to combine 
migration cost and power consumption. But it didn't consider 
network performance, neither the communication cost. Similar 
to [2], Jung et. at. [3] built a system that optimizes power con
sumption, performance benefits, and transienl COSlS incurred 
by adaptation. In [4], Zu et. at. proposed an eHieienl povver
aware resource scheduling strategy that reduces data center's 
power consumption effectively based on VM live migration. 

Chabarek et. at. [17] state that power consumption are 
becoming a significant technology challenges that threaten to 

slow bandwidth growth. They described the power issues in 
routers, and advocated power-awareness be a primary objective 
inlhe design and configuralion 01 DeN. I1eHer et. at. [18] pro
posed a system for reducing energy consumption of DCN by 
dynamically turning on-off links and switches while imposing 
little or no harm to network performance. They implemented 
their design on a hardware testbed using OpenFlow and Nox. 
Their results show that there are great potential of energy 
saving for dynamic DCN. To make dynamic DCN more 
practical, Wang et. at. [19] used data mining technique to 

predicl coming lramc demands and adjusled DCN according 
to the predicted workload. They also considered correlations 
between traffic in the pmccss of tJ"affic eonsoJid�tion, which 
can further improve the performance of dynamic DCN. 

In [20], Mann et. at. proposed a framework for VM place
ment and migration. They took both the network topology 
alld network lraffic de1ll(tl1ds illlo accounl so thaI Ihe llelwork 
energy consumption can be minimized while satisfying as 
many network demands as possible. Fang et. at. [21] did 
similar work except that they assumed that instead of only 
one VM per server, several VMs can be placed on one server. 
Shang et. at. [22] mainly focused on how to save energy in 
high-density data center network from the routing perspective. 
In [23], Huang et. at. proposed enery-aware VM placement 
in which they considered application dependencies to reduce 
network energy consumption. 

III. PROB LEM ANALY S I S  

Tn this section, w e  (jrst. present our definition or cost 
functions for host and network. Then we introduce our real
trace experiments on VM migration cost. 

A. Power Consumption of Host 

There are many studies working 10 quantitatively deline 
power consumption of host in modern data center. Most studies 
show that CPU consumes more power than other activities, 
such as memory and 110, and these activities are usually 
positively proportional to CPU utilization. In [24], Economou 
et. at. demonstrated such observation by experiments, which 
COl1firms that CPU takes the main part of power consumption. 

Similar result can be found in [25], in which Fan et. at. claim 
that using CPU utilization as the main factor to estimate the 
power consumption of a host is reasonably accurate. Based 
on their analyses, the power drawn by a host can be estimated 
using the following formula: 

u> O 
u = O 

(1) 

Ph (u) denotes the total power of a host with CPU utilization 
u. P� denotes idle power of host, while Ph denotes the power 
when host works at full CPU utilization. a is a parameter 
used to minimize the squared errors varying with different host 
types, 1.4 in Fan's experiment. We use Eqn. (1) to estimate 
power consumption of host in data center. For example, if the 
idle power of one host isLOOw, the full power is 150w and 
the utilization is 0.5, its power usage is 125w according to 
Eqn. (1) while a = 1. 

B. Traffic Cost of nov 

Data center network is a group of cable-linked switches 
which provide host to host and host to Internet communication. 
As the scale of cloud data center continues growing, the core 
level or DeN onen ha,> to(l ll l UCIt tranic 10 handle . In order 10 
Illiligale this scaJabilily issue, we can make Illore trallic lram
IllillocaLly by consolidating trallic. Besides scalability, energy 
saving of DCN has also allracled significant allenlion recenUy. 



Traditionally, switches are turned on all the time. However, 
recent power measurement studies present that dynamically 
turning on and off switches on demand leads to a more energy
cnicicnl DeN. Tn rl81, Hellcr et. al. observe that when the rate 
of all the ports in a switch goes from 0% to 100%, the power 
of the switch increases at most 8%. This shows that turning 
off a switch yields most energy saving. Similar result can be 
found in [19]: an idle switch with no active ports consumes 
more than half of the total energy consumed by a switch with 
all ports turned on. If we can turn off unused switches through 
traIIic eonsolidaLion, we can save a large amOlUlt of energy in 
DeN. Therefore instead of defining network cost as its power 
consumption, we dcIine lrallic cost as 1011ow$ to localize traIIic 
as much as possible: 

(2) 

Here rab is the tralIie rate between hosts ha and hb· f (ha, hb) 
denotes the communication cost between hosts ha and hb, 
which is positively proportional to communication distance 
between ha and hb (usually represented as hop-counts). In this 
way, minimizing tranic cost will localize trame and lead to a 
more scalable alid more energy-efficient. DeN. 

C. VM Migration Cost 

Substantially, VM migration is to shift resources and to 
transmit memory pages, of which the latter incurs more cost. In 
order to perform VM migration, hosts need to do extra work, 
which increases their energy consumption. The VM memory 
pages are transmitted through DeN, which causes extra traffic 
cost. 

In [26 ], Clark et. al. propose live VM migration, in which 
"live" means that candidate VM continues working during 
most of its migrating period, and the service downtime is 
very short. In [27], Voorssluys et. al. present case study of 
a modern Internet application to quantify the effect of live 
VM migration. Their results exhibit that even though live 
VM migration brings addit.ionaJ tranic, it still performs better 

than oHlillc migration. The scrvice downtimc is an important 
metric in VM migration, and in live VM migration it is 
extremely short. This greatly reduces the risk of Service Level 
Agreement (SLA) violation. However, none of these works 
analyzed migration cost quantitatively, making it extremely 
dilliculL for us to precisely caplure the cosl of VM migration. 

Corrcsponding1y, wc denne traHic cost of VM live migraLion 

as Eqn. (2) , and we quantify extra energy consumption of 
hosts incurred by live VM migration process through real
trace experiments. We set up a testbed consisting of 6 Dell 
PowerEdge R710 hosts and perform VM live migration via 
VMware between two hosts. After connecting each host to a 
powerbay series North Meter, we record the power state of 
source and destination hosts during VM live migration. The 
memory size of migrating VM is 2040MB. We conclude from 
50 times VM migration data that on average VM live migration 
lasts 14s, and the average power increase of pairwise hosts is 
about 12w. Figure 1 shows the power state of the two hosts 
which conduct VM live migration. 
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Fig. 1. The power consumption of pairwise hosts during migration period 

We can see from Fig. 1 that total power of the two hosts 
stays stable before and after VM live migration, and changes 
rapidly when VM migration begins. We can also see that 
before and after VM migration the total power increases. This 
is mainly due to the small differences of distinct hosts. 

We formally define VM migration cost as the sum of host 

power consumption and Lral1lc cos I: 

(3) 

Here PhYM is the power increase of hosts, To is the time 
duration of VM migration. s is the memory size of candidate 
VM, and f (he, hd) is the communication cost between current 
host he and destination host hd. 

At this moment we are able to formulate the VM consoli
dation problem mathematically, which is described in details 
in the next section. 

IV. P ROBLEM FORM ULATION 

[n this section, we first fOl11iaJJy define Combined VM 
Consolidation (CVC) problem as a constrained optimization 
problem. Then we prove the computational complexity and the 
hardness of approximation of CVe. 

A. Problem Formulation 

Our goal is to study the problem of consolidating VMs to 
reduce total host energy consumption and network cost as well 
as migration cost . HJiefty speaking, we consider the COllillion 
scenario where n VMs are running on m hosts, and we assume 
that traffic rates between arbitrary hosts, memory page sizes 
of VMs (Sl, ... , sn) and their computing requests (erl , ... , ern) 
are all known. We conduct VM consolidation every T time, 
�nd our goal is to find a consolidation scheme whicll brings 
maximum cost saving for the whole system. Notice that we 
have to take off the energy cost spent for VM migration from 
the overall cost saving after migration, and thus the Combined 
VM Consolidation (eVe) problem can be formally dcIined as 
follows: 



max f (Ph(uJ -Ph(u;)) T - t C(sj,h(j),h'(j))+ 
i=1 j=1 

t t (11 (rij,h(i),h(j)) -11(rij,h'(i),h'(j)))T (4) 
i=l j=1 

subject to: 

L crj:S 1, Vi, 
h'(j)=i 

h'(j)=J0, Vj. 

(5) 

(6) 

In the above formulation, h(j) denotes the host that vm j is 
currently placed on, h' (j) denotes the host afterward and 

Hence, Ph(Ui) is the power of host hi before consolidation, and 
Ph (u;) is the power of host hi after consolidation. Accordingly, m 
L (Ph(Ui) - Ph(uD)T is the total energy conservation of all 
i=1 

n 
m hosts. L C(sj,h(j),h'(j)) is the total migration cost of 

j=1 
n n 

n VMs. L L (11 (rij, h' ( i),h'(j)) -11(rij,h(j),h(j)))T is the 
i=l j=1 

total trllffic cost COl1scnmtiOl1. 
Constraint (5) ensures that the total computing requests from 

all VMs placed on one host will not exceed the capacity of 
this host. Constraint (6) guarantees that at least one host is 
used to accommodate vmi. 

n 

m 
Since the current host power L (Ph(Ui))T and traffic cost 

i=1 
L (11(rij,h(i),h(j)))T are known, we can transform this 

i,j=1 
maximum optimization problem into its equivalent minimiza-
tion form as follows: 

m n 
min LPh(uDT+ LC(Sj,h(j),h'(j))+ 

i=1 j=1 
n 

L 11 (rij, hi (i), h' (j))T 
i,j=1 

(7) 

Now CVC becomes a minimization problem, jointly con
sidering host power consumption, network cost and migration 
cost. Total energy consumption of hosts can be calculated 
through Eqn. (1) , network cost through Eqn. (2) and migration 
cost through Eqn. (3) . 

We also can use CVC to formulate VM placement problem 
where the main goal is to place n VMs on m empty hosts with 
minimum cost. We can achieve this by removing migration 
cost from (7). In this way, CVC becomes a Combined VM 
Placement problem formulation, which places VMs in cost 
minimizing manner. 

Table I summarizes main notations used in this paper. 

TABLE I 
MAIN NOTATIONS 

Symbol 

v = {vmiJ Set of VMs 
H = r hd Set of hosts 
R = {rij} [rartie rate manix 

Description 

F = U(i,j)} communication cost matrix 
CR = {cri) Set of VM computing requests 
S = {Si} Set of VM memory sizes 
V H = {Vhi 1 Set of virtual hosts 
PH = [phd Set of physical hosts 
T Time interval of conducting NICE 
Ph (U) power of host while working at utilization U 
Pt(rab,ha,hb) C()�t or traffic wirh rate rab going from ha to hb 
C(s,he,hd) cost of migrating VM from he to hd 
h(i) host on which vmi is placed 

B. Complexity Analysis 

Actually, as shown in [13], when the communication cost 
(HId tnlHic rat.es are arbitrary real values, subproblem or 
minimizing network cost in CVC falls into the category of 
Quadratic Assignment Problem (QAP) which is one of the 
most dil1iculL problems in NP-bard cla�s , However, eve 
imposes special constrainls on communicaLion eost and IraHie 
rates. Now, we analyze the computational complexity of CVC. 
As we all know, in the NP-complete prove process, proving 
that a special instance of one problem is NP-complete will 
indicate the original problem is NP-complete. Therefore, in 
this section, we prove that the special CVC instance in 
wliicli both traffic cost and migration cost are igl101'ed is NP
complete. 

Theorem 1. CVC is NP-complete. 

Proof In r2Sl, Vaz.irani fomlally deIlne Ihe decision 
version of Bin Packing Problem in this way: given n items 
with sizes al, ... , an E (0, 1] and a constant B, we need (0 find 
a packing of items into unit-sized bins so that the number of 
used bins is at most B. We can construct an instance of CVC 
from an instance of bin packing problem as follows: 

• Given n VMs vml, ... , vmn with computing requests 
al, ... , an E [0, 1], we have m hosts hl, ... , hm with com
puting capacity volumes VI, ... , Vm and power consump
tion PI, ... , Pm· In this case, assume 

VI = . . .  = Vm = 1, and PI = . . .  = Pm· 

There is a special host ho who can accommodate all VMs, 
i.e., co> L ai and when it is active, it consumes more 
power than the total power consumption of all other hosts, 
i.e., Po > m 'Pm' Our goal is LO iind llle nexL-stage VM 
placement with minimum total power consumption. 

• If there are VMs on host hi, the power of hi is Pi. 
Otherwise, its power is 0. Therefore the total power 
consumption of hosts is num· Pm, since the power con
sumption of each host is the same. Here num is the 
number of active hosts in the new consolidation. 

• The cost to migrate vmi from one host to another is 0. 



The VMs in CVC can be regarded as items while the hosts 
as bins. Now we can see that bin packing instance has a 
solution with B bins if.! CVC instance has a solution with 
total power B ' Pm. Therefore, CVC is NP-complete. • 

Next, we prove CVC's harness of approximation. 

Theorem 2. For any e > 0, there is no approximation aL
gorithm having a guarantee of approximation ratio Less than 
3/2 - e for CVC, unLess P = NP. 

Proof If there were such an algorithm, then we can 
solve the deciding version of NP-hard problem Partition in 
polynomial time, which is to decide if there is a way to 
partition n non-negative numbers al, ... , an into two sets, each 

set equals to � Lai. We can construct an instance of CVC in 

this way: there are n VMs with sizes of al, "" an and the 
1 

capacities of hosts ho , ... ,hm all equal to - Lai' Obviously, 

the answer to the partition question is yes rff the n VMs can 
be packed into 2 hosts, and then answer is no iff more than 
3 hosts are needed. Suppose that there is an approximation 
algorithm having a guarantee of approximation ratio less than 
3/2 - e, then this approximation algorithm can solve the 
deciding version of partition question in polynomial time. This 
is because if the approximation result of CVC is 2, the answer 
to the partition question is yes. If the approximation result of 
CVC is 3 or more, the answer to partition question is no since 
the optimal result cannot be 2, otherwise the approximation 
ratio 3/2 - e will 110t be sa tislied (3/2> 3/2 - e). This is 
impossible unless P = NP! Therefore, for any e > 0, there 
is no approximation algorithm having an approximation ratio 
less than 3/2 - e for CVC unless P = NP. • 

V. NICE: AN EFFICIENT SCHEME FOR CVC 

Previous analyses show that CVC is NP-complete, which 
cannot be solved within polynomial time. In this section, 
we dcsi�n an cfficicnt hCUli.stic schemc to solvc eve. As 
shown in Eqn. (7), our goal is to minimize host energy 
consumption, network cost and migration cost through VM 
consolidation. On one hand, we know from our VM migration 
cost experiment that VM migration lasts relatively short, and 
the tol.=J] energy eOllSumpl.ion and trame cos t it incurs are 
relatively small. On the other hand, DCN consumes much less 
energy than hosts in modern data center [16]. Based on these 
observations, we propose a scheme named NICE (Network
aware VM ConsoLIdation scheme for Energy Conservation in 
Data CEnter) 1.0 solve eve el'licienUy. 

NICE consists of three subroutines: FirstFit-Decr algorithm 
for packing VMs into virtual hosts; Kernighan-Lin algorithm 
for adjustillg these vil1ual hosts to minimize intn-host traffic; 
Greedy-Map algorithm for mapping virtual hosts to physical 
hosts. Algorithm 1 describes NICE. 

A. FirstFit-Decr Subroutine 

VMs vml, ... , vmn with computing requests erl, ... , crn are 
to be placed on m hosts with computing capacity 1. Our goal is 
to pack all VMs into minimum number of virtual hosts. We use 

Algorithm 1: NICE 

Input: Set of VMs V = {vml, ... , vmn}; set of VM 
computing requests CR = {erl , ... , cr n l; Set of 
hosts H = {h I, ... , hm}; Traffic rate matrix 
R = {rij} m/ m; Communication cost matrix 
F = { f ( i, j) } m>..m 

Output: An VM consolidation assignment NICE for 
each vmi 

1 k, V H +- FirstFit-Decr(V, CR) ; /* Group VMs */ 

2 VH +- Kernighan-Lin(VH,R,k) ; /* Adjust k virtual hosts */ 

3 NICE+- Greedy-Map(VH,PH); /* Map virtual hosts */ 

T'irslT'it-Decr algorithm to solve this sub-problem. We lirst sorl. 
all VMs in non-increasing order according to their computing 
request erl, ... , ern and then pack n VMs into virtual hosts 
one by one. VH denotes the set of virtual hosts vh I , ... , vhk 
while u( vhi) indicates the utilization of vhi. The pseudo codes 
are described in Algorithm 2: 

Algorithm 2: FirstFit-Decr 

Input: V; CR 
Output: k, V H 

1 k.: 1 ;  /* Initial number of virtual hosts k is 1 */ 
2 u( Vhi) < 0 ;  /* Initial utilization for u( Vhi) is 0 */ 
3 Sort all VMs in non-increasing order according to cri; 
4 for i = 1 to n do 

6 

9 
10 
11 
12 
13 
14 
15 
16 
17 
18 end 

flag L- true; 

for j = 1 to k do 

end 

if cri + u( vh j) .,:. 1 then 

I 
u(vhj) :,-cri+ vh/; 
Place vmi on vh j, 
flag.. false; 

end 

if flag is true then 

I 
k < k+ 1; 
u(vhj) +- cri; 
Place vmi on vhk; 

end 

Next, we prove the effectiveness of FirstFit-Decr algorithm. 

Theorem 3. The tight bound for FirstFit-Decr aLgorithm is 
11 

k S 90pt +�, where k is the output of FirstFit-Decr and opt 
is the optimaL number of virtuaL hosts. 

Proof It is proven in [29] that FFD S .!..!.OPtB+�' where 

F F D is the output of First Fit Decreasing �lgorithm in bin
packing problem and OptB is the optimal value. Thus, k <' 
11 6 
90pt+9' • 

B. Kernighan-Lin Subroutine 

After FirstFit-Decr subroutine, n VMs are packed into k 
virtual hosts, Since the communication cost between VMs in 



the same virtual host is 0, we hope to minimize inter-host 
LraHie by adjusting these k V1J1WlI hosts so (hilt total trilffi<.; cost 
can be reduced. This problem can be rephrased as a Graph 
Partitioning Problem, which is to partition graph vertices into 
k disjoint groups with minimum edge cut cost. The maximum 
size of the groups is limited, varying according to different 
scenarios, and each edge in the graph has corresponding cost. 
Kernighan-Lin algorithm [30] minimizes the total cost of edge 
cut by iteratively choosing two partitions from original k 
partitions and exchanging some of their vertices to reduce total 
cut cost. In NICE, we treat VMs as vertices, virtual hosts as 
pm-tilions and lrallie rale between VMs as edge eosL AHer 
applying Kernighan-Lin algorithm to k virtual hosts generated 
by FirstFit-Decr subroutine, we get a new VH set whose inter

host IraHie is minimized. 

C. Greedy-Map Subroutine 

In the last subroutine, we use a greedy algorithm to map k 
virtual hosts to k physical hosts. III each ileration, we find vhgm 
and phgm from the remaining virtual hosts and physical hosts, 
whose mapping incurs minimum trallie cost and migration cost 
Ctn! which is calculated according to Eqn. (2) and Eqn. (3). 
Continue doing this until all virtual hosts are mapped. The 
pseudo codes are described in Alg. 3. 

Algorithm 3: Greedy-Map 

Input: R, F ,  VH, H 
Output: Mapping of virtual hosts to physical hosts 

1 for i = 1 to k do 
2 for vh E V H, h EO H do 
3 Find vhgm and phgm with minimum Ctn!; 
4 Map vhgm to phgm; 
5 Delete vhgm from VH and delete phgm from H; 
6 end 
7 end 

VI. EVALUATION 

In lhis seclion, we first presenl our experiment settings, lhen 
we show our evaluation results with corresponding analyses. 

A. Experiment Settings 

As shown in section III, in order to quantify trallie cost 
and migration cost in CVC, communication cost f (s, d) is 
introduced, which varies according to different circumstances 
and network topologies. In our evaluation, we set f (s, d) 
positively proportional to the length of transmission path 
between host s and d, and this Length depends on (he specific 
network topology of DCN. Although many new DCN topolo
gies have been proposed, such as DCell [9], BCube [10], VL2 
[11], Portland [12], network topology used in most modern 
data centers is more likely to be multi-rooted tree topology. 
In the simulation, we have conducted experiment in which 
we compare the performance of NICE under different DCN 
topologies. 

As for tralIie ralc matrix, even though trallie raLes between 
VMs vary from time to time, it is shown in [13] that a large 
fraction of inner VMs traffic rates arc rcJCltivcly constant. 
Besides, VM consolidation doesn't affect the total cost of 
outer traffic, i.e., Ihe (rallie between hOSI f1lld ouler Tnternet 
Therefore when we C(mduct NICr::. we can usc current traffic 
rales 10 calculate traHie cost to find out the best consolidation 
scheme and adjust VMs according to this scheme. In the next 
round 01" NICE, we usc renewed tTalIie Ill�trix 10 recalculate 
Irarric cost. In our simulation, we gellerate trallie rale m(ltrix 

based on Iwo models. The lirsl global trallie model assumes 
ilial each V1v1 sends lIallic to all oLlter VMs at equal ratc, and 
ilie raLes lor ditlerenl VMs vary. The second localtraflie model 
partitions VMs into groups, and each VM only communicates 
with VMs in the same group. We mix up these two models to 
gel Ihe Irallie rate m(lt.rix used in our simulalioll, which can 
relleet trallic paLtern in reality according 1.0 r13l Simulations 
are implemented on Visual Studio 2012 and carried out on 
a 64-bit Intel Xeon E5645 2.5GHZ 2-processors Server with 
32GB memory. The various parameters are listed in Table II: 

TABLE II 
NICE SIMULATION PARAMETERS 

System Parameter 

number of hosts 
number of VMs 
Network Topology 
T / To / pl / Ph / PhYM 

B. Simulation Results 

Settings 

from 16 to 512 
from 32 to 1024 
Tree, VL2, FatTree, BCube 
600s / 14s / 100w / 150w / 12w 

As shown in Section II, [2] [3] dealt with VM consolidation 
problem, but they didn't consider network performance im
provement issue. [17] [18] [19] [20] [21] only tried to improve 
network energy elTiciency while [13] [23] only dealt wiLh VM 
placement problem, taking no consideration of VM consol
idation. Since there is no other VM consolidation scheme 
jointly considering host energy consumption, network cost and 
migration cost at the same time, we show the efficiency of 

NICE through the comparison of total cost before and after 
NICE. The total cost is the sum of host energy consumption, 
network cost and migration cost. Before NICE, n VMs are 
randomly placed in m hosts. 

We firsL evaluate the perfollHUlce of NICE againsl dilTer
ent problem scales. We set the number of hosts to 2i(i = 
4,5,6,7,8,9) and the number of VMs twice of the number 
of hosts. The data center topology we evaluate here is multi
rooted tree topology. Fig. 2(a) shows the total cost before and 
after conducting NICE. We can see that NICE can reduce large 
amount of total cost against different problem scales. 

Next, we evaluate the performance of NICE against dif
ferent DCN topologies, e.g., Tree, VL2, FatTree and BCube. 
Communication cost matrices F are calculated for different 
DCN topologies. We set the number of hosts to 128 and 
the number of VMs to 256. Fig. 2(b) shows the total cost 
of the four topologies before and after NICE. We can see 



that NICE works well for different DCN topologies. We can 
also see that before and after NICE, the total cost varies with 
different DCN topologies. These variations are mainly due to 
the differences of network topologies. We can see that total 
cost of BCube is the largest. This is because connecting the 
same number of hosts, BCube has more levels than the other 
three topologies, and this results in higher communication cost. 
In all, NICE can save about 20% total cost for different DCN 
topologies. 

Fig. 3(a) shows the performance of NICE against different 
VM densilies. We .irsl set Ihe numher or hosls to 256 and 
then incrementally increase the number of VMs by half of 
the number of hosts. We can see that NICE still can save 
large amount of total cost as the density of VMs increases. 
But the percentage of total cost it saved slowly decreases. 
This is because as the number of VMs increases, utilization of 
data center increases, and this reduces the potential of saving 
energy through VM consolidation in data center. Therefore, 
when there are too many VMs running in the data center, we 
should not conduct NICE because this may do more harm than 
good. 

In the end, we evaluate the performance of NICE against d
illcrcntmlxturc of global and 10callraHic model. We gradually 
set tbe percenlage 01 local lrallic ralc in the lolal trallie rale 

from 0%, ... , 100% and evaluate the performance of NICE. 

Fig. 3(b) shows the simulation results and we can see that as 
the local traffic increascs, the total cost increases. Ho"'''cver, we 
call also sec Ihal. as the local Iranic increases, the lot.al cost. 
saving increases, too. This is because the more unbalanced the 
lrame is, tbe grealer the potential ollraHic cos t saving is, and 
NICE can exploit this greater potenlial 10 save more tralIie 
cost. 

From the above results and analyses, we can conclude that 
NICE can solve CVC effectively under different scenarios. 

VII. CONCLUSION 

In this paper, we formulate Combined VM Consolidation 
(eVe) problem to reduce hosl energy con�umptioll, l.ralIie 
cost and migration cost in cloud data center. We analyze 
cost functions for host energy consumption and network cost 
thoroughly and formulate VM migration cost function by real
trace experiments in a testbed of 6 servers. We prove that CVC 
is a NP-complete problem, which is inappproximable by a 
factor of 3/2 - e. Correspondingly, we propose an efticienl 
heuristic scheme named NICE: Network-aware VM Con
solIdation scheme for Energy Conservation in Data CEnter 
to solve CVC. NICE consists of three subroutines: FirstFit
Decr algorithm for packing VMs into virtual hosts; Kernighan
Lin algorithm for adjusting virtual hosts; and Greedy-Map 
algorithm for mapping virtual hosts to physical hosts. Our 
siUlLIlaLiol1 results validate Ihe cllicicncy or NICe. In all, 

ø¿÷ Ü·ºº»®»²¬ °®±¾´»³ ½¿´» ø¾÷ Ü·ºº»®»²¬ ÜÝÒ ¬±°±´±¹·»
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lo lhc besl  o[ our knowledge, we arc lhe {irs I work joinlly 

considering host energy conservation, network scalability and 
energy saving and migration cost of VM consolidation in cloud 
data center. 
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